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Abstract
In this work, we introduce the notion of graph metric codes. In these codes, the code alphabet is the set of the vertices of

a fixed graph G, the codewords are vectors over V(G) and the distance of two vectors is defined as the summation of the graph
distances of the corresponding entries. Then, we present a code construction with the minimum distance of 3. To the best of
our knowledge, for the particular case of G = K2, our result gives the best known lower bound for the size of minimum distance
3 codes, when the length of the vectors is large enough. Finally, we present an application of these codes in the context of the
innate degree of freedom of Kekule structures in organic chemistry.
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1. Introduction

Points of bounded pairwise distance in a space are important objects both from theoretical and applicable
views. When the space is a product metric space of a discrete set equipped with Hamming metric, the set of
mentioned points forms an object called a “code”. In other words, a code C of length n over a metric space
(Σ,d) is a collection of n-length sequences, called “codewords”. Codes are useful tools in various applications
such as data transmission and data storage. However, for different needs, we may need to study different
distance measures.
In this paper, we consider the graph distance as a metric and define “graph metric codes”. These codes
generalize all the other known codes such as Hamming, Lee, and L1 codes. Then, we consider the problem
of maximum size codes of a given length and minimum distance 3. We explain a method to construct such
codes. As an application of distance 3 graph metric codes, we describe a general method to obtain an upper
bound on the maximum fractional forcing number of the graphs.
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2. Preliminaries

Let (Σ, dist) be a discrete metric space where Σ is a set of elements and dist is a metric. A length n

code C is a non-empty subset Σn equipped with the distance function which we also denote by dist and is
defined as dist(x,y) =

n∑
i=1

dist(xi, yi) where x,y ∈ Σn and xi,yis are the coordinates of x,y, respectively.

Elements of C are called codewords. The minimum distance of a code is the minimum of dist(x,y) over all
distinct codewords x and y and we denote it by d.

When Σ is the set V of the vertices of a graph G and dist(x,y) is defined as the length of the shortest
path from the vertex x to the vertex y, then dist is called the metric distance associated with the G. The
resulting codes are also called “graph metric codes”.

When G is isomorphic the complete graph Kn, the cycle graph Cn, or the path graph Pn, the metric
distance is called “Hamming”, “Lee” or “L1-norm” distances, respectively. These codes are widely studied
and in this paper, we introduce the notion of graph metric which simultaneously generalizes all of these
three metrics.

Let AH(q,n,dH)(AG(q,n,dG)) be the largest possible size of code C over the alphabet Σ(V(G)) of size
q, with the length n and the minimum Hamming distance dH (minimum graph distance dG). When q = 2,
we show AH(2,n,dH) with AH(n,dH).

3. Main results

In this section, we aim to present a method to construct graph metric codes of minimum distance 3.
As we will see in the next section, such codes play an important role in the study of a parameter called
“maximum fractional forcing number” of graphs. We first explain our method for the case of the graph K2
and then we present the general code construction for arbitrary graphs.

3.1. Binary Hamming Metric Codes of Distance 3
In this part, we present a lower bound for AH(n, 3). Later in the next section, we will generalize this

method for the case of graph metric codes for a particular family of graphs.
Let L be a code of fixed L distinct binary codewords of size n. First, to find a lower bound for AH(n, 3),
we try to find an upper bound for n according to L. So, we show how to increase the distance of L codes
which have dH(L) ⩾ 1 by increasing their size. Then we can obtain the upper bound for n according to L.
According to this upper bound for n, we can find a lower bound for AH(n, 3).

Definition 3.1 (Distance of binary matrix). Let Am×n = [ai,j] ∈ {0, 1}m×n be a binary matrix. We define
the function d for each pair (ai,∗,aj,∗) of rows in matrix A as follows

d(ai,∗,aj,∗) =
n−1∑
k=0

|ai,k − aj,k| (3.1)

and so we will define the distance of a binary matrix as below

d(A) = min
0⩽i<j⩽m−1

d(ai,∗,aj,∗) (3.2)

Lemma 3.2. Let Am×n be a binary matrix with d(A) ⩾ 1, and A ′
m×(n+1) be the output matrix of imple-

menting Algorithm 1 for input A, then we have d(A ′) ⩾ 2.

Proof. Consider bi’s from Algorithm 1, and define the column b as b = [b0,b1, · · · ,bm−1]t.
From Algorithm 1, we suppose that A ′ =

[
A b

]
and according to Definition 3.1, it can be concluded that

d(A ′) ⩾ d(A). It is clear that if we have d(A) ⩾ 2, then we can conclude d(A ′) ⩾ 2. So, we can assume



Mehri Oghbaei et al., Commun. Combin., Cryptogr. & Computer Sci., 2 (2022), 195–200 197

Input: Binary matrix Am×n = [ai,j] with d(A) ⩾ 1
Output: Binary matrix A ′

m×(n+1) = [a ′
i,j] with d(A ′) ⩾ 2

Initialize A ′ as a matrix of m rows and n+ 1 columns;
for i < m do

bi = 0;
end
for j < n do

bi = bi + ai,j;
a ′
i,j = ai,j;

end
a ′
i,n = bi mod 2;

return Matrix A ′;
Algorithm 1: min2discode

that d(A) = 1. In this case, if d(A ′) < 2 then, there exists at least a pair of (x,y) that d(a ′
x,∗,a ′

y,∗) < 2;
As mentioned, we have

a ′
x,∗ =

[
ax,∗ bx

]
, a ′

y,∗ =
[
ay,∗ by

]
(3.3)

On the other hand, we assumed that d(A) ⩾ 1. Thus we can conclude that

1 ⩾ d(a ′
x,∗,a ′

y,∗) ⩾ d(ax,∗,ay,∗) ⩾ 1 (3.4)

According to Equation 3.3, it can be obtained that

d(ax,∗,ay,∗) = d(a ′
x,∗,a ′

y,∗) = 1 ⇒ bx = by (3.5)

The assumption d(ax,∗,ay,∗) = 1 says that parities of the bits 1 in the rows ax,∗ and ay,∗ are not equal.
According to Algorithm 1, bi is the parity of the numbers of bits 1 in the i-th row, and the equation bx = by

contradicts the fact that parities of the bits 1 in the rows ax,∗ and ay,∗ are different.

Input: Binary matrix Am×n = [ai,j] with d(A) ⩾ 2
Output: Binary matrix A ′′

m×(n+⌈logn⌉) = [a ′′
i,j] with d(A ′′) ⩾ 3

Initialize matrix A ′′ as a copy of A;
Initialize columns P0, P1, ...,P⌈logn⌉−1 of m elements;
for i < ⌈logn⌉ do

for j < m do
Pi[j] = 0;
for k < n do

if k
2i mod 2 = 1 then
Pi[j]+ = ai,k mod 2;

end
end
Pi[j] = Pi[j] mod 2;

end
Append column Pi to A ′′;

end
return Matrix A ′′;

Algorithm 2: min3discode
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Lemma 3.3. Let Am×n be a binary matrix with d(A) ⩾ 2, and A ′
m×(n+⌈logn⌉) be the output matrix of

implementing Algorithm 2 for input A. Then we have d(A ′) ⩾ 3.

Proof. According to Algorithm 2, we have that

A ′′ =
[
A P0 P1 .... P⌈logn⌉−1

]
(3.6)

Suppose that a ′′
x,∗ and a ′′

y,∗ are two arbitrary rows of matrix A ′′. We know that

a ′′
x,∗ =

[
ax,∗ P0[x] P1[x] . . . P⌈logn⌉−1[x]

]
(3.7)

a ′′
y,∗ =

[
ay,∗ P0[y] P1[y] . . . P⌈logn⌉−1[y]

]
(3.8)

If the inequality d(a ′′
x,∗,a ′′

y,∗) > 2 holds, the lemma is proved; Also we have d(A) ⩾ 2. So, we claim that

d(a ′′
x,∗,a ′′

y,∗) = d(ax,∗,ay,∗) = 2 (3.9)

and the whole difference of two rows a ′′
x,∗ and a ′′

y,∗ are in the first n elements. Let these two differences
occur in s-th and t-th elements. In other words, we have

ax,s = a ′′
x,s ̸= a ′′

y,s = ay,s (3.10)
ax,t = a ′′

x,t ̸= a ′′
y,t = ay,t (3.11)

As s and t are two distinct numbers, there exists at least one number k that binary representation of s and
t are different in k-th bit. We want to show that Pk[x] ̸= Pk[y].
Without loss of generality, we can consider that k-th bit of binary representation of t and s are 0 and 1,
respectively. According to Algorithm 2,

Pk[x] =
n−1∑
r=0

ax,r × ( r
2k mod 2) (3.12)

Pk[y] =
n−1∑
r=0

ay,r × ( r
2k mod 2) (3.13)

As we know d(ax,∗,ay,∗) = 2, and these two differences only occur in two s-th and t-th elements. So, we
can suppose that

Pk[x] − Pk[y] = (ax,s − ay,s)(
s
2k mod 2) (3.14)

+(ax,t − ay,t)(
t

2k mod 2) (3.15)

As we assumed that k-th bit of binary representation of s is zero, then it holds t
2k mod 2 = 0. It shows

that
Pk[x] − Pk[y] = (ax,s − ay,s)(

s

2k mod 2) (3.16)

On the other hand, we know that ( s
2k mod 2) = 1 and ax,s ̸= ay,s, so it shows that Pk[x] ̸= Pk[y]

Theorem 3.4. Let AH(n, 3) be denoted to the largest possible size of code C over the field {0, 1}, with length
n and minimum Hamming distance 3. Then the following inequality holds:

2n−1

n+ 1− logn ⩽ AH(n, 3) (3.17)

Proof. Let ML×⌈logL⌉ = [mi,j] ∈ {0, 1}L×⌈logL⌉ be a matrix that mi,j equals to the j-th bit of the binary
representation of number i. So, every two rows of this matrix have at least distance 1. Then we have:
d(M) ⩾ 1
First of all, we run Algorithm 1 with input M and achieve matrix M ′

L×(⌈logL⌉+1) which leads that: d(M ′) ⩾ 2
After that, it is only needed to run Algorithm 2 with input M ′ and get the matrix M ′′

L×(⌈logL⌉+1+⌈log(⌈logL⌉+1)⌉)
where we have d(M ′′) ⩾ 3.
It is clear to see that L = 2n−2

n+1−logn
satisfies the inequality ⌈logL⌉+ 1+ ⌈log(⌈logL⌉+ 1)⌉ ⩽ n.
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3.2. Graph Metric Codes Of Distance 3
In this part, we use the same technique as the previous section and present a lower bound for AG(n, 3)

where G is a complete regular p-partite graph. First of all, since G is a regular p-partite graph, there exists
a natural number m that G ≃ Km,m,...,m.
Assume that we want to present graph code L which contains L codewords with dG(L) ⩾ 3. First, consider
codewords c1, c2, . . . , cL of size k = ⌈logpm L⌉ that ci is the base-pm representation of number i. Since
each pair of these codewords are the base-pm representation of distinct numbers, for each 1 ⩽ i < j ⩽ L:
dG(ci, cj) ⩾ 1
Now we want to construct graph code L ′ = {c ′1, c ′2, . . . , c ′L} as follows:

c ′i = ci||gi and gi = (ci[0] + · · ·+ ci[k− 1]) mod pm (3.18)

Which || means adding the bit gi to the end of row ci.
Now we want to construct graph code L ′′ with dG(L ′′) ⩾ 3. Let k ′ = ⌈logp(k+ 1)⌉ and for every natural
number b, we define function fb as follows:∀x,y ∈ N ∪ {0} : fb(x,y) = ay where (ak ′ . . .ayay−1 . . .a1a0)b
is the base-b representation of number x. For each i ∈ {1, . . . ,L}, we define si as follows:

∀j ∈ {0, . . . , k ′} : si[j] = [
k∑

t=0
c ′i[t]× fp(t+ 1, j)] mod p. It is clear that all digits of si’s are less than

p. So, we can consider each si is the base-p representation of a number. Let r1, . . . , rL be the base-pm
representation corresponding to s1, . . . , sL. Now we construct graph code L ′′ = {c ′′1 , c ′′2 , . . . , c ′′L } where we
have c ′′i = c ′i||ri for each i ∈ {1, . . . ,L}.

Theorem 3.5. For the labeling of the vertices such that labels of the nodes within each part are congruent
modulo p, dG(L ′′) ⩾ 3.

Proof. If dG(ci, cj) = 2 and their difference is only one digit. It is noticeable that c ′i[k] ̸= c ′j[k], then
dG(c ′′i , c ′′j ) ⩾ 3. If dG(ci, cj) = 2 and their difference are in indices w1 and w2. It is clear to see that if
c ′i[k] ̸= c ′j[k], then we have dG(c ′′i , c ′′j ) ⩾ 3. So, assume that c ′i[k] = c ′j[k] or in other words,

ci[w1] + cj[w2]
pm
≡ cj[w1] + cj[w2] (3.19)

Since w1 ̸= w2, there is an integer x where fp(w1, x) ̸= fp(w2, x). Now we want to prove that si[x] ̸= sj[x].
For the sake of contradiction, assume si[x] = sj[x]

0
p
≡ si[x] − sj[x]

(ci[w1] − cj[w1])fp(w1, x)
p
≡ (cj[w2] − ci[w2])fp(w2, x)

According to Equation 3.19 and fp(w1, x)
p

̸≡ fp(w2, x), we can conclude that ci[w1] − cj[w1]
p
≡ 0

p
≡ cj[w2] −

ci[w2]. It shows that both (ci[w1], cj[w1]) and (ci[w2], cj[w2]) are in the same part of graph. The distance
of each two would be two so the total distance would be at least four. If dG(ci, cj) = 1 holds, it can be
concluded that c ′i[k] ̸= c ′j[k]; so dG(c ′i, c ′j) ⩾ 2, and it can be obtained dG(c ′′i , c ′′j ) ⩾ 3 with some simple
algebraic calculations.

Exactly the same as Section 3.1, this can be obtained that AG(n, 3) ⩾ (pm)n−1

n
.

4. Application

Beyond the fact that graph metric codes generalize other types of codes, they are useful in other contexts.
As an example, in [2], Ebrahimi and Ghanbari proved that if G is a connected graph on q vertices and
S ⊆ V(Gn) such that no two vertices in S have a common neighbour, then qn − |S| is an upper bound of the
fractional forcing number of Gn (See [2] for the precise definition of maximum forcing number problem).
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This parameter is closely related to the notion of innate degree of freedom of Kekul´e structures in the
context of organic chemistry. (See [1]).

In the language of coding theory, S is in fact a length n code of distance 3 over G metric, and in order
to obtain the best upper bound of the fractional forcing number, we must find the best code of minimum
graph distance 3. Results of Section 3.2 is particularly useful to obtain such bounds.

5. Conclusion

In this paper, we first introduced graph metric codes which generalize codes over several distance mea-
sures. Then we provide a code construction for distance 3. Our construction, provides the best known lower
bound even for the special case of Hamming metric. We present an application of distance 3 graph metric
codes in the problem of maximum fractional forcing number.
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